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Abstract: This work addresses the accuracy of the Global Navigation Satellite Systems
(GNSS)-Reflectometry (GNSS-R) scatterometric measurements considering the presence of both
coherent and incoherent scattered components, for both conventional GNSS-R (cGNSS-R) and
interferometric GNSS-R (iGNSS-R) techniques. The coherent component is present for some type
of surfaces, and it has been neglected until now because it vanishes for the sea surface scattering case.
Taking into account the presence of both scattering components, the estimated Signal-to-Noise
Ratio (SNR) for both techniques is computed based on the detectability criterion, as it is done in
conventional GNSS applications. The non-coherent averaging operation is considered from a general
point of view, taking into account that thermal noise contributions can be reduced by an extra factor
of 0.88 dB when using partially overlapped or partially correlated samples. After the SNRs are
derived, the received waveform’s peak variability is computed, which determines the system’s
capability to measure geophysical parameters. This theoretical derivations are applied to the United
Kingdom (UK) TechDemoSat-1 (UK TDS-1) and to the future GNSS REflectometry, Radio Occultation
and Scatterometry on board the International Space Station (ISS) (GEROS-ISS) scenarios, in order to
estimate the expected scatterometric performance of both missions.

Keywords: SNR; cGNSS-R; iGNSS-R; GNSS-R; GNSS-Scatterometry

1. Introduction

The analysis of the SNR is very important to determine the variance of the radar cross section
or reflectivity, and therefore, to assess the system’s capability and accuracy to measure geophysical
parameters. The accuracy of radar scatterometric measurements from space was first addressed in [1],
where two different effects were analyzed: the bias due to a lack of precise knowledge of the exact
value of the system’s parameters, and the random fluctuations of the measured signal. While the bias
can be compensated for through appropriate instrument calibration, the random fluctuations of the
signal (speckle noise [2]) can only be reduced by averaging. In [1], it was considered that both the signal
and the system noise follow Gaussian statistics, that is, the received signal is purely incoherent.

GNSS-R is a field that emerged in 1988 with the proposal of the multi-static GNSS-based
scatterometry technique for remote sensing [3]. In 1993, the PAssive Reflectometry and Interferometry
System (PARIS) concept was proposed in order to do mesoscale altimetric measurements using
the signals of opportunity provided by the GNSS satellites [4]. Due to the forward scattering
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geometry and the surface scattering properties, the reflected signal may not always obey the Gaussian
statistics assumed in [1]. In such cases, the statistics of the reflected field follow a Hoyt distribution,
which describes a Gaussian field plus a coherent component [5]. In that scenario, a new scatterometric
analysis must be performed in order to estimate the scatterometric accuracy of GNSS-R techniques.

The first GNSS-R scatterometric analysis was performed in 2001 [6], where a statistical analysis of
the scatterometric SNR was presented, determining the accuracy of the surface height retrieval and
the minimum number of samples required to estimate wind speed from a space-borne platform using
cGNSS-R. Therein, the power spectrum of the sea-surface-reflected waveform was also introduced,
which is of high importance in this analysis. However, this spectrum was derived assuming that there
was no coherent component, which validates the expression only for rough sea surfaces. In 2004 and
2006, a detailed study regarding the correlation function of the sea surface GNSS-R waveform was
presented, including a stochastic voltage model of the reflected waveforms and their autocorrelation
functions [7,8]. In 2011, the scatterometric accuracy of a PARIS-like instrument using the iGNSS-R
approach was presented [9]. In all those studies, a Gaussian model like the one in [1] was assumed,
because experimental evidence had confirmed that the sea-surface scattered signals follow complex
Gaussian statistics.

The new data obtained from the UK TDS-1 satellite have shown that while the Gaussian statistics
is a valid model for the sea surface scattered signals, it is not satisfactory for surfaces such as flat land
areas, and in particular wetlands, sea-ice, and lakes [10]. For such surfaces the retrieved Delay-Doppler
Map (DDM)s show a “K-shape” feature, as shown in [11], which indicates a presence of the coherent
component, requiring the use of a Hoyt distribution to describe the statistics of the scattered signals.
Following this evidence, this work extends the scatterometric analysis performed in [9] to the cGNSS-R
case, and includes the presence of the coherent component in the scattered signals that was not
considered in previous works.

This paper starts with a definition of the signal model for both cGNSS-R and iGNSS-R cases. Then,
the correlation peak statistics, which is the interesting one in the scatterometric mode, is analyzed for
the GNSS case. Subsequently the same analysis is performed to the GNSS-R case, including the
effect of non-coherent integration. Later, the variability of the correlation peak is computed.
Simulations analyzing the performance of the UK TDS-1 and GEROS-ISS mission in terms of SNR and
correlation peak variability are performed. This paper ends with a discussion and a concluding section
highlighting the main achievements.

2. Signal Model

Generally, two different approaches are used to process GNSS reflected signals. Initially,
the iGNSS-R technique was proposed in [4], which consists of the cross-correlation of the reflected and
direct signals which allows to use the entire signal bandwidth, including the encrypted codes that
present a wider spectrum. The second approach proposed was the cGNSS-R technique, which consists
of the cross-correlation of the received reflected signal with a clean replica of the accessible/public
codes [12]. These codes used to have a narrower bandwidth than the encrypted codes. A more
detailed description of both techniques can be found in [13]. Even though the iGNSS-R technique was
developed earlier, in this section, the cGNSS-R signal model is presented prior to the iGNSS-R one
because the iGNSS-R can be seen as the cGNSS-R with the addition of two extra noise terms.

2.1. cGNSS-R

The voltage signal after the correlation with a clean replica of the satellite code (waveform) has
three main different components:
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yc(t, τ) =
1
Tc

∫ + Tc
2

− Tc
2

(
ur(t + t′ + τ) + nrt(t + t′ + τ)

)
a(t + t′)dt′ = ρ0(τ) + nS(t, τ) + nT,c(t, τ), (1)

where t and τ stand for time and lag respectively, ur stands for the received reflected (r) signal,
nrt for the reflected thermal noise signal, a for the satellite spreading code, Tc for the coherent
integration time, subscript c for cGNSS-R, ρ0(τ) is a deterministic value and stands for the
coherent component of the signal, nS(t, τ) is a complex Gaussian random variable with zero mean
and power/variance 2σ2

s (τ) representing the incoherent reflected power or speckle noise [2,14],
and nT,c(t, τ) is also a complex Gaussian random variable with zero mean and power/variance
2σ2

t,c(τ), which represents the thermal noise in the cGNSS-R.
The signal part of the computed waveform can be expressed as a function of the system

parameters as [15]:

ys (t, τ) =
1
Tc

∫ + Tc
2

− Tc
2

ur(t + t′ + τ)a(t + t′)dt′ =
∫ √

EIRPT D(~ρ)ACF [δt (t,~ρ)] S [δ f (t,~ρ)] g(~ρ, t)d~ρ

= ρ0(τ) + nS(t, τ),

(2)

where
√

EIRPT is the square root of the Equivalent Isotropically Radiated Power (EIRP) of the
transmitting satellite, D(~ρ) is the voltage antenna pattern projected on ground, ACF stands for the
Auto-Correlation Function (ACF) shape of the GNSS signals [16], S is a sinc function expressing the
Doppler behavior of the spreading function [17], ~ρ is a vector from the specular reflection position to
the surface scattering point, and g(~ρ, t) is defined as a solution for the scattered field in the Kirchoff
Approximation (KA) [15]:

g(~ρ, t) = −r
exp (j2π f t)

j4πR0R
exp [−jκ(R0 + R)]

q2

qz
, (3)

where r stands for the Fresnel reflection coefficient, f is the GNSS carrier frequency, κ stands for the
wavenumber, R0 is the distance from some surface point to the transmitter, R is the distance from the
same surface point to the receiver, ~q = −κ(~n− ~m) = (qz,~q⊥), ~m is the unitary vector of the incident
wave, and~n is the unitary vector of the scattered wave.

For a perfectly flat surface, a purely coherent scattering reflection takes place. Then, Equation (2)
tends to [15,18]

ys (t, τ) ∼ −
√

EIRPT D(0)ACF [τ] S [0] r
exp

[
j2π f t− j2π

(
R0,sp+Rsp

λ

)]
j4π(R0,sp + Rsp)

exp
[
−2κ2σ2

h cos2 (θinc)
]

, (4)

where σ2
h stands for the variance of surface heights, θinc for the incidence angle, and the factor

exp
[
−2κ2σ2

h cos2 (θinc)
]

corresponds to the reflected field attenuation due to surface roughness under
the Physical Optics (PO) approximation [19]. Equation (4) is equivalent to the direct transmission
case, an image of the receiver is located under the surface, and the incident field is multiplied by the
Fresnel reflection coefficient [15]. This is in agreement with [18], where the specular reflected power in
a bistatic configuration is defined. However, for very rough surfaces (κσh sin(θinc)� 1), the coherently
reflected component vanishes. As a result, the received scattered field becomes normally distributed,
and its expression is given in [15], which represents a so-called “speckle” or self-noise.

The thermal noise part of the reflected waveform is expressed by

yrt(t, τ) =
1
Tc

∫ + Tc
2

− Tc
2

nrt(t + t′ + τ)a(t + t′)dt′ = nT,c(t, τ), (5)
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2.2. iGNSS-R

For this case, the complex voltage signal after the correlation with the direct signal has also three
distinct components, which are similar to those in the cGNSS-R case, taking into account the addition of
some terms to the interferometric thermal noise component. Therefore, the iGNSS-R voltage waveform is

yi(t, τ) =
1
Tc

∫ + Tc
2

− Tc
2

[
ur(t + t′ + τ) + nrt(t + t′ + τ)

]
sd(t + t′)dt′ = ρ0(τ) + nS(t, τ) + nT,i(t, τ), (6)

where sd stands for the direct sampled signal, and nT,i(t, τ) for the iGNSS-R equivalent thermal noise
term. If the direct signal is under the Line Of Sight (LOS) conditions, it can be expressed as a sum
of the coherent term, which represents the signal code, and the thermal noise component for the
direct signal. Consequently, the iGNSS-R waveform can be expressed as a function of the cGNSS-R
waveform as follows:

yi(t, τ) = yc(t, τ) +
1√

SNRd

[
yur ,dt(t, τ) + yrt ,dt(t, τ)

]
, (7)

where yc(t, τ) is given by Equation (1), 1/
√

SNRd is a normalizing factor that appears due to
normalizing the spreading code direct signal part to unit energy, SNRd is the pre-correlation thermal
SNR for the direct signal, yur ,dt(t, τ) is the correlation of the reflected signal component with the
direct channel thermal noise, and yrt ,dt(t, τ) is the correlation between the direct and reflected
noise components.

Equivalent waveform models can be found in several references for both the cGNSS-R and the
iGNSS-R cases [7–9,15,20–23]. However, they were all based on rough sea scenarios and considered
the widely accepted sea-surface scattering model proposed in [15] which neglects the presence of the
coherent component. The signal model presented here does not neglect this component, and therefore
it is more general.

3. Correlation Peak Statistics in GNSS and Squaring Loss Paradox

The analysis of the correlation peak statistics has been widely explored in the GNSS literature [24–28].
The fundamental operation in a GNSS signal acquisition system is the cross-correlation of the digitized
received signal with a clean replica of the satellite code (matched filter) in order to obtain the so-called
waveform, see Equation (1), which is the same computational operation that is performed in a
conventional GNSS-R receiver. This computation is also known as coherent integration, and it can
last up to 20 ms, which is the duration of a navigation bit. Longer coherent integration times can
be always applied after compensating for the navigation bit sign change. After coherent integration,
non-coherent integration is performed, which consists of summing the waveforms obtained in power
units to improve the visibility or detectability of the satellite presence. Non-coherent integration
requires a squaring operation which changes the statistics of the obtained samples, and therefore,
leads to a redefinition of the resulting SNR. Figure 1a shows a typical block diagram of a coherent
or I/Q detector. It is possible to introduce four different definitions of the SNR, but they correspond,
in fact, to two. The first one is the SNRc,in, which is the SNR before correlation with the clean replica
of the satellite code, or pre-correlation SNR. It is always negative since GNSS signals are below the
noise level, unless a very high directivity antenna is used to acquire them. The second one is the
SNRc,out, which is the SNR after correlation with the clean replica of the satellite code. It is related
to the SNRc,in by the signal’s bandwidth times the coherent integration time. Basically, the thermal
noise bandwidth is reduced in the coherent integration process, letting the signal rise above the new
thermal noise level. The third one is the SNRnc,in, which is the SNR resulting from a non-coherent
detection scheme where no phase information is available. The SNRnc,in is related to the SNRc,out by
the squaring-loss parameter [29]. The last one is the SNRnc,out, which is the SNR after the non-coherent
integration/averaging.
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(a)

(b)

Figure 1. (a) Typical GNSS/cGNSS-R receiver block diagram; (b) Simplified iGNSS-R receiver block diagram.

In traditional GNSS applications, the received signal is formed by a coherent or LOS component
and the thermal noise. The coherent component is a deterministic signal, and the thermal noise
is modeled as a complex Gaussian random variable with zero mean and variance/power 2σT

2.
In this case, the incoherent scattered component term is not present since there is no scattering process
involved. To analyze the SNRc,out, it is necessary to concentrate on the correlation peak, where the
signal’s amplitude is the largest. One way to determine the SNRc,out is by applying the detectability
criterion [30], which is based on a comparison of the signal power against its variability (noise power)

d =
E{ fS+N} − E{ fN}√

E{ fN
2} − E{ fN}2

, (8)

where fS+N is a function with a subscript which stands for the signal (S) plus noise (N) components,
and fN is a function with a subscript which indicates that stands only for the noise components.

The detectability criterion involves the use of the signal’s mean value which is divided it by its
standard deviation. It is an amplitude/voltage signal-to-noise ratio if the function fS+N is defined
in Volts [V] units, and it is a power signal-to-noise ratio if the same function is defined in Volts
squared [V2] units [31]. If it is applied when the samples are squared, which is the Volts squared case,
the conventional SNR definition is obtained as:

d =
E{ fS+N} − E{ fN}√

E{ fN
2} − E{ fN}2

=
A2

2σT2 =
PS

PN
, (9)

where A is the signal amplitude in [V], PS = A2 stands for the signal (S) power, and PN = 2σT
2 for the

thermal noise (N) power.
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As seen, in the computation of the traditional detectability criterion (d), the signal power is
measured at the waveform’s correlation peak (where both signal and noise components are present,
S + N). The noise power is evaluated outside the waveform correlation peak (where the signal is not
present, N). However, in the squaring process, the properties of the signal change. Before squaring,
the signal’s variability at the correlation peak and at any other correlation lag is the same, since only
zero-mean thermal noise is present. Conversely, after squaring, outside the correlation peak an
exponential random variable is found (square of a complex Gaussian random variable), whereas at
the correlation peak, a non-central χ2 random variable emerges due to the presence of the LOS signal
component. This means that the variability at lags outside the interval occupied by the main part
of the ACF function is different from the one at the correlation peak. Consequently, the effect of the
same noise is different depending on the correlation lag where it is analyzed. Therefore, its effect on
the correlation peak cannot be studied when there is no signal presence, which could be done before
squaring. At this point, the so-called “squaring-loss" parameter plays a role in the observed SNR, and a
different detectability criterion (d′) must be used to take into account the noise effect at the correlation
peak [32], which is

d′ =
E{ fS+N} − E{ fN}√

E{ fS+N
2} − E{ fS+N}2

. (10)

Comparing Equations (10) to (8), it can be seen that whereas the numerator remains the same, the
denominator changes. The computation of d′ involves computing the correlation peak variability under
the presence of both signal and noise terms, which is a more realistic approach. This detectability
criterion can also be applied to estimate the SNRc,out. In the particular example of Equation (9),
the result would be the same than the one obtained using Equation (8), because before squaring
the mean of the noise samples is zero, a fact that changes due to squaring. By specifying terms in
Equation (10) for the squaring case, the SNRnc,in and the SNRnc,out can be expressed in terms of the
SNRc,out [31–33]:

d′ = SNRnc,in =
SNRc,out√

1 + 2SNRc,out
, (11)

d′ = SNRnc,out =
√

Ne f f
SNRc,out√

1 + 2SNRc,out
, (12)

where
√

Ne f f is the effective number of averaged samples [13,34]. If S + N samples are independent,

which is a valid approximation here because the signal term is deterministic, the variability at the
correlation peak is due to thermal noise whose samples are independent by definition, and therefore
Ne f f tends to N, being N the number of independent samples averaged. Although these equations
are valid for the navigation case, the GNSS-R case adds an extra feature: the speckle noise due to the
scattering [2,14]. This means that the variability of the correlation peak is not only due to thermal
noise, but also due to the scattering process, and previous equations should be modified accordingly.

4. Correlation Peak SNR in cGNSS-R and iGNSS-R

Due to the low-power and high-phase noise of the GNSS reflected signals both cGNSS-R and
iGNSS-R approaches tend to use ∼1 ms of coherent integration time and then apply the non-coherent
summations/averaging, which means that they work with the power waveforms instead of the
complex-value voltage waveforms. The power waveform, Ya(t, τ), is defined as the absolute-value
squared of the voltage waveform:
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Ya(t, τ) =
∣∣ya(t, τ)

∣∣2, (13)

where a stands for c or i, in order to distinguish between the conventional and interferometric techniques.
Hence, the detectability criteria become, where mathematical details are in Appendix A and C,

dc =
Pcoh(τ) + Pincoh(τ)

PTc(τ)
, (14)

d′c =
1√(

1 + 1
SNRTHc

)2
−
(

1− 1
SNRSP

)2
, (15)

di =
Pcoh(τ) + Pincoh(τ) + PTc(τ)

SNRr
SNRd

PTc(τ)
(

1 + 1
SNRd

) =≈ dc
1

1 + 1
SNRd

, (16)

d′i =
1 + 1

dc
SNRr
SNRd√(

1 + 1
SNRTHi

)2
−
(

1− 1
SNRSP

)2
, (17)

where Pcoh = |ρ0(τ)|2, and it stands for the coherent reflected power, Pincoh = E{|nS(t, τ)|2} = 2σ2
s (τ),

and it stands for the incoherent reflected power, PTc = E{|nT,c(t, τ)|2} = 2σ2
t,c(τ), and it stands for

the cGNSS-R thermal noise power, SNRd is the pre-correlation SNR or SNRc,in for the direct signal,
SNRr is the pre-correlation SNR or SNRc,in for the reflected signal, and:

SNRTHc =
Pcoh(τ) + Pincoh(τ)

PTc(τ)
, (18)

SNRSP =
Pcoh(τ) + Pincoh(τ)

Pincoh(τ)
, (19)

SNRTHi =
Pcoh(τ) + Pincoh(τ)

PTi(τ)
=

Pcoh(τ) + Pincoh(τ)

PTc(τ)
(

1 + 1
SNRd

(SNRr + 1)
) =

SNRTHc

1 + 1
SNRd

(SNRr + 1)
, (20)

where SNRTHc is the post-correlation thermal SNR or SNRc,out for the reflected signal in the cGNSS-R
case, SNRSP is the signal to speckle noise ratio, and SNRTHi is the equivalent post-correlation thermal
SNR or SNRc,out for the reflected signal in the iGNSS-R case.

The difference between taking into account the variability of the signal at its correlation peak
or away from it is clearly seen by comparing dc with d′c, and di with d′i. When the variability at
the correlation peak is considered, the detectability criterion is degraded (dc > d′c and di > d′i).
Also, the cGNSS-R and iGNSS-R approaches can be compared using the detectability criteria. The
comparison between dc and di shows that the detectability criterion for the iGNSS-R is a degraded
version of the cGNSS-R one. This occurs because for the iGNSS-R approach the thermal noise rises in
comparison with the cGNSS-R approach due to the two extra noise terms to be considered. However,
if SNRd � 1, then di → dc. The same occurs when considering the d′c and d′i, since SNRTHc > SNRTHi .
Equally, if SNRd � 1, then SNRTHi → SNRTHc , and d′i → d′c. There is another aspect that is related to
the definition of the detectability criterion, which is that the mean noise level value in the iGNSS-R case
is not subtracted at the correlation peak by using the one computed at lags away from the correlation
peak. The remaining term is PTc(τ)

SNRr
SNRd

, but since SNRr � SNRd, this term can be neglected.
The coherent, incoherent, and thermal noise powers presented above can be computed as [18]

Pcoh = E{|ρ0(t, τ)|2} =
ETGRD2

R(0)Λ
2 [0] |S [0] |2λ2

(4π)2(R0,sp + Rsp)
2 |r (θinc) |2e−4κ2σ2

h cos2(θinc), (21)
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Pincoh(τ) = E{|nS(t, τ)|2} = 2σ2
S(τ) =

ETGR

(4π)2 IAillpq(τ), (22)

IAillpq(τ) = λ2
∫

Aill

σ0
pq(~ρ)D2

T(~ρ)D2
R(~ρ)ACF2[τ,~ρ]|S[τ,~ρ]|2

4πR2
0(~ρ)R2(~ρ)

d2ρ, (23)

where Aill stands for the illuminated area, σ0
pq for the radar cross-section at the incident p polarization

and reflected q polarization,

PTc(τ) = k [Tant + T0 · (F− 1)] Bcoh =
kTNr

Tc
= 2σ2

t,c (τ) , (24)

where Bcoh = 1/Tc, k is the Boltzmann constant, Tant stands for the antenna temperature, T0 = 290 K,
F for the noise figure of the receiving chain, and TNr for the receiver’s equivalent noise temperature.
If it is assumed that thermal noise is white, the dependence on τ can be neglected and the thermal
noise power is 2σ2

t,c.
The coherent component is defined only for |τ| ≤ 1, which corresponds to the ACF function of

the GNSS Pseudo-Random Noise (PRN) codes, and the radiation comes from the first Fresnel zone
area. On the other side, the incoherent component exists for different values of τ, which will depend
on the surface roughness conditions. Note that increasing the transmitted power or the antenna gain
does not improve the signal-to-speckle noise ratio (SNRSP), because the speckle noise, or also Rayleigh
fading, is a multiplicative/scattering noise (self-noise) [2]. Note that when the coherent component is
negligible the SNRSP = 1, which occurs in a backscattering geometry such as in Synthetic Aperture
Radar (SAR) systems [35]. Also, note that SNRSP = 1 for this case, because this SNR is defined as a
power SNR. If the voltage signals are considered, the result of the SNRSP would be the well-known
5.56 dB for the speckle noise [35], which corresponds to the ratio between the mean and the standard
deviation of a Rayleigh random variable.

5. Effect of Non-Coherent Summations in the Detectability Criteria

Due to the low power, and consequently low SNR, of GNSS reflected signals, averaging or
non-coherent summations of consecutive waveforms is needed to improve the quality of the data
retrieved and reduce the degradation from the speckle noise. This is also known as non-coherent
integration, and it is also the same procedure performed in conventional GNSS receivers as it was
remarked in the last step of the signal processing flow chart in Figure 1. Mathematically, non-coherent
averaging of consecutive power waveforms is modeled as

W(t, τ) =
1
N

N

∑
n=1

Yna(t, τ), (25)

where Yna(t, τ) stands for the power waveform, n for the waveform index, and N is the number of
waveforms used in the summation. When non-coherent integration is applied, the variability of the
signal is highly reduced, which helps to detect the waveform. This operation should theoretically
improve the SNR by a factor of

√
N, as stated in Equation (11), when samples are independent.

However, some airborne experimental data have shown that the improvement factor is sometimes
smaller than that in the lags where the signal term is present, see for instance [33,34]. This fact is
generally related to the platform’s height and speed, which are the parameters that determine the
surface correlation time, since for airborne and space-borne conditions the surface can be considered
frozen during the coherent integration time [15]. The Van Cittert-Zernike theorem can be used to obtain
a rough estimation of the surface correlation time, taking into account the wavelength, the platform’s
speed and height, the shape of the illuminating signal, and the incidence angle [8,36]. If the estimated
surface correlation time is larger than the coherent integration time, the speckle noise term will
be correlated, and consequently samples will not be independent. Conversely, under spaceborne
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conditions, experimental data have shown that samples are practically uncorrelated [37], which occurs
because the platform is relatively faster. In other words, for spaceborne applications, the surface
correlation time is close to 1 ms (coherent integration time) due to the receiving satellite orbit that
determines the platform’s speed, whereas for airborne applications, the surface correlation time depends
highly on the platform’s height and speed, whose parameters depend more on the aircraft used.

Since experimental spaceborne waveforms seem to be uncorrelated [37], one may think that the
averaging could be performed even using partially overlapped waveforms (waveforms obtained using
some common signal samples), which could improve the final SNR by reducing the waveform’s variability.
To do it, a more general mathematical expression of the non-coherent integration must be used:

Z(t, τ) =
1
T

∫ T

0
Ya(t + t′, τ)dt′, (26)

which is the averaging definition of a random process when T → ∞, being T the non-coherent
integration time.

The main differences between Equations (25) and (26) are depicted in Figure 2. While for
Equation (25) the blocks of data for the incoherent averaging are taken separately without overlapping,
for Equation (26) there is a moving window of 1 ms length and the waveforms are obtained using some
overlapped samples. Note that in order to have all the waveforms aligned, i.e., to have the maximum
correlation peak at the same lag, the clean C/A code block against whom the signal is correlated to
must be circularly shifted. If 1 ms waveforms are highly correlated, the use of partially overlapped
data data will not provide any improvement because the addition is made with data whose correlation
coefficient is nearly 1.

(a)

(b)

Figure 2. (a) Conventional non-coherent integration scheme; (b) General non-coherent integration definition.
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Therefore, the detectability criteria after the non-coherent integration become, where the
mathematical details can be found in Appendix D:

dnc =

√
3
2

T
Tcoh

Pcoh(τ) + Pincoh(τ)

PTc(τ)
=

√
3
2

T
Tcoh

dc (27)

d′nc =
Pcoh(τ)+Pincoh(τ)√

2tsPcoh(τ)Pincoh(τ)+2tnPcoh(τ)PTc (τ)+2tstnPincoh(τ)PTc (τ)+TnP2
Tc (τ)+TsP2

incoh(τ)
(28)

dni =
√

3
2

T
Tcoh

Pcoh(τ)+Pincoh(τ)+PTc (τ)
SNRr
SNRd(

1+ 1
SNRd

)
PTc (τ)

= dnc
1

1+ 1
SNRd

+
√

3
2

T
Tcoh

SNRr
SNRd+1 (29)

d′ni =
Pcoh(τ)+Pincoh(τ)+PTc (τ)

SNRr
SNRd√

2tsPcoh(τ)Pincoh(τ)+2tnPcoh(τ)PTi
(τ)+2tstnPincoh(τ)PTi

(τ)+TnP2
Ti
(τ)+TsP2

incoh(τ)
(30)

where the normalized correlation times ts, tn, Ts, and Tn are defined as:

ts =
1
T

∫ T

−T
Λ
(

ξ

T

)
γs,s(ξ, τ)dξ, (31a)

tn =
1
T

∫ T

−T
Λ
(

ξ

T

)
γnTc ,nTc

(ξ, τ)dξ =
Tc

T
, (31b)

Ts =
1
T

∫ T

−T
Λ
(

ξ

T

)
|γs,s(ξ, τ)|2dξ, (31c)

Tn =
1
T

∫ T

−T
Λ
(

ξ

T

)
|γnTc ,nTc

(ξ, τ)|2dξ =
2
3

Tc

T
. (31d)

The normalized correlation times related to thermal noise (tn, and Tn) are Tc
T and 2

3
Tc
T respectively,

and they show how effective is the incoherent averaging in thermal noise variability reduction.
They are both equal in the cGNSS-R and iGNSS-R cases, as they depend on the normalized correlation
function, which is equal in both cases; see Appendix A for the demonstration of equal thermal
noise correlation functions. The same occurs with the incoherent power normalized correlation
times (ts, and Ts), which strictly depend on the speed of the receiving platform, its height, and the
spreading/modulation codes used, since the surface can be considered frozen during the coherent
integration time. Note that for Equations (27), (29) and (31d) there is an improvement factor of√

3/2 or 2/3, respectively. This occurs because the squaring operation performed to obtain the power
waveform changes the correlation functions of the voltage waveforms, and what was a triangular
correlation function now becomes a triangle squared. This factor 2/3 is the area of a normalized triangle
squared function. Also note that this factor only helps in the reduction of the thermal noise variability,
but not in the speckle noise, which depends on ts and Ts. However, if overlapped samples are not
used, Tn becomes Tc

T . This last point would occur because the second and fourth order correlation
functions of the thermal noise would become a Kronecker delta since when sampling a normalized
triangle function or a normalized triangle squared function every ms the result is the Kronecker delta
function. In such case, the factor

√
3/2 would disappear.

There is another aspect to highlight related to Equations (28) and (30). In those cases, there are
several terms in the denominator, each of them related to different moments of the two relevant
noises. If the thermal noise is the dominating noise term and its power is larger than the signal power
considering both coherent and incoherent components, then the Tn is the dominating factor and the√

3/2 gain will be seen here. Note, that if the thermal noise power is larger than the signal power the
waveform shape is too noisy for any retrieval. If the thermal noise is the dominating noise term but
the coherent signal power is larger than the thermal noise power, the SNR will be driven by the tn

parameter and no
√

3/2 improvement will be seen. However, if the speckle noise is the dominating
noise term, two different things may occur. One is that the the coherent power is negligible and the
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SNR is driven by Ts. The other one is that both coherent and incoherent signal powers are much larger
than the thermal noise power, and therefore the SNR will be driven by the ts parameter.

6. Correlation Peak Variability

The SNR has been defined with the help of the detectability criterion, which is basically the
signal’s mean value divided by its standard deviation. Using those defined SNRs, the correlation peak
variability should be computed in order to estimate the minimum incoherent integration time to obtain
a peak variability lower than the accepted one, which indicates the system’s accuracy. The useful
signal can be estimated as:

Ŝuse = Smeas,S+N − Smeas,N (32)

where use stands for useful, and its standard deviation is:

σŜuse
=

√
E
{

Ŝ2
use
}
− E

{
Ŝuse

}2
=
√

Var{Smeas,S+N}+ Var{Smeas,N} (33)

under the assumption that measurements of the signal + noise term (S + N) and the noise term (N) are
uncorrelated, which is true since they are computed at different values of τ (different correlation lags),
and the correlation functions derived in Appendix A demonstrate this point. Therefore, the variability
of the signal for the cGNSS-R technique is (the var{Smeas,S+N} and var{Smeas,N} are computed in
Appendix D):

σŜuse,cGNSS−R =
√

2tsPcoh(τ)Pincoh(τ) + 2tnPcoh(τ)PTc(τ) + 2tstnPincoh(τ)PTc(τ) + 2TnP2
Tc
(τ) + TsP2

incoh(τ), (34)

or normalized to the signal power (Pcoh(τ) + Pincoh(τ)):

σŜuse,cGNSS−R =

√
2
(

1− 1
SNRSP

) (
ts

SNRSP
+ tn

SNRTHc

)
+ 2 ts

SNRSP

tn
SNRTHc

+ 2 Tn
SNR2

THc
+ Ts

SNR2
SP

. (35)

For the iGNSS-R technique such variability is:

σŜuse ,iGNSS−R =

√
2tsPcoh(τ)Pincoh(τ) + 2tnPcoh(τ)PTi (τ) + 2tstnPincoh(τ)PTi (τ) +

(
2− SNRr

SNRd

)
TnP2

Ti
(τ) + TsP2

incoh(τ), (36)

which for the case SNRr � SNRd can be approximated by:

σŜuse ,iGNSS−R ≈
√

2tsPcoh(τ)Pincoh(τ) + 2tnPcoh(τ)PTi (τ) + 2tstnPincoh(τ)PTi (τ) + 2TnP2
Ti
(τ) + TsP2

incoh(τ). (37)

If it is normalized by the signal power, it turns into:

σŜuse ,iGNSS−R ≈
√

2
(

1− 1
SNRSP

) (
ts

SNRSP
+ tn

SNRTHi

)
+ 2 ts

SNRSP

tn
SNRTHi

+ 2 Tn
SNR2

THi

+ Ts
SNR2

SP
. (38)

7. Estimation of the SNR and Signal’s Peak Variability for the UK TDS-1
and GEROS-ISS Missions

In this section the derived theoretical values are applied to specific scenarios considering the
lag (τ) where the signal is maximum (peak value) in order to estimate both the best achievable SNR and
the variability of the measured reflectivity or radar cross section at that point. With those estimations,
the scatterometric accuracy of the cGNSS-R and iGNSS-R techniques could be assessed. For the
first scenario, it is considered the UK TDS-1 mission, launched in 2014 with a Global Positioning
System (GPS) bistatic payload. For the second scenario, the future GEROS-ISS mission is considered,
which is analyzed for both the cGNSS-R and iGNSS-R cases. For all these scenarios, it is assumed that
only incoherent sea surface scattering takes place, so the coherent component is negligible. In such
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situations a widely accepted scattering model to simulate the incoherent reflected signal power
is used [15], in which the radar cross-section is given by:

σ0(~ρ) =
π|r|2q4

q4
z

P
(
−~q⊥

qz

)
. (39)

The theoretical results presented in this work have been extended to situations when there is
a coherent component, and in those situations a different radar cross section model must be used.
Also they have been extended to other lags using the appropriate correlation functions derived in
the Appendices.

7.1. cGNSS-R

7.1.1. UK TDS-1 Scenario

The main parameters of the simulation are shown in Table 1. For this scenario two different
values of the received power at the Earth surface are considered, from which the EIRP of the GPS
satellites is estimated. One is −158.5 dBW which is the minimum received power at the Earth’s surface
defined by the GPS Interface Control Document (ICD) [38], and the other one is −153 dBW, which is
the maximum received power at the Earth’s surface specified in the same document [38]. Both can be
considered as pessimistic and optimistic cases, respectively. Also, all simulation results shown here
consider 1 ms coherent integration time.

Table 1. UK TDS-1 scenario simulation parameters.

Sensor Parameter Magnitude

Orbit Height 635 [km]
Ground speed 6864 [m/s]

Minimum Rx Power on Earth −158.5 [dBW]
Maximum Rx Power on Earth −153 [dBW]

Incidence angle 15◦

Frequency Band L1 (C/A Code)
Sea Water Dielectric Constant 72.6 + j58.5
Down-Looking Antenna Gain 13 [dBiC]

Noise Figure 3.5 [dB]

Figure 3 shows a summary of the estimated SNRs as a function of the incoherent integration
time for the two proposed scenarios: a pessimistic one (a), and an optimistic one (b). This examples,
which are truncated to 1 s of incoherent averaging, could be referred to the level 1b of the data provided
by UK TDS-1 Measurement of Earth Reflected Radio-navigation Signals By Satellite (MERRByS)
research team. Figure 4 shows the estimated normalized peak variability or accuracy of the σ0

retrieval for the scenario described in Table 1 and the estimated SNRs shown in Figure 3.
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(a) (b)

Figure 3. Simulations SNR for the TDS-1 scenario and cGNSS-R: (a) Minimum received power on
ground of −158.5 dBW; (b) Minimum received power on ground of −153 dBW. Legend indicates u10

wind speed.

(a) (b)

Figure 4. Simulations of the normalized peak variability for the TDS-1 scenario and cGNSS-R:
(a) Minimum received power on ground of −158.5 dBW; (b) Minimum received power on ground of
−153 dBW. Legend indicates u10 wind speed.

7.1.2. GEROS-ISS Scenario

The main parameters of the simulation are shown in Table 2. For this scenario the same parameters
as for the UK TDS-1 scenario have been considered only changing the receiving antenna directivity,
and the platform’s height and speed, which will change the ts and Ts parameters. Also, all simulation
results shown here use 1 ms coherent integration time.



Sensors 2017, 17, 183 14 of 30

Table 2. GEROS-ISS scenario simulation parameters.

Sensor Parameter Magnitude

Orbit Height 400 [km]
Ground speed 7214 [m/s]

Minimum Rx Power on Earth −158.5 [dBW]
Maximum Rx Power on Earth −153 [dBW]

Incidence angle 15◦

Frequency Band L1 (C/A Code)
Sea Water Dielectric Constant 72.6 + j58.5
Down-Looking Antenna Gain 22 [dBiC]

Noise Figure 3.5 [dB]

Figure 5 shows another summary of the estimated SNRs for the GEROS-ISS mission as a function
of the incoherent integration time for the two different values of received power. These simulations can
be used to determine the expected SNR and better define the parameters of the cGNSS-R scatterometric
operation mode. Figure 6 shows the estimated normalized peak variability for the estimated SNRs
shown in Figure 5. It is seen that for the most optimistic case, the expected performance does not
depend on the sea state, because it is largely determined by the speckle noise.

(a) (b)

Figure 5. Simulations SNR for the GEROS-ISS scenario and cGNSS-R: (a) Minimum received power on
ground of −158.5 dBW; (b) Minimum received power on ground of −153 dBW. Legend indicates u10

wind speed.

(a) (b)

Figure 6. Simulations of the normalized peak variability for the GEROS-ISS scenario and cGNSS-R:
(a) Minimum received power on ground of −158.5 dBW; (b) Minimum received power on ground of
−153 dBW. Legend indicates u10 wind speed.
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7.2. iGNSS-R

GEROS-ISS Scenario

The main parameters of the simulation are shown in Tables 3 and 4 for the pessimistic and
optimistic cases, respectively. For the iGNSS-R technique the same parameters as for the GEROS-ISS
scenario have been considered while only changing the traditional waveform (C/A code) to the
full-composite model (C/A- , P-, and M-codes), which will change the ts and Ts parameters. Note that
each signal term for each code will result in a different correlation time (the chip size determines the
footprint size at the reflecting surface), and the correlation function can be expressed as a weighted
linear combination of each code correlation function. Consequently, the EIRPs have been changed and
separated by the code under use, to finally add them up and obtain the total EIRP. Furthermore, in the
iGNSS-R the bandwidth is a critical parameter, since it determines the SNRd and SNRr, which at the
same time determines the scatterometric accuracy. They do not depend on the coherent integration
time because they refer to the pre-correlation SNR. Results for this simulations are shown in Figure 7
for the SNR, and in Figure 8 for the normalized peak variability.

Table 3. GEROS-ISS scenario simulation parameters for the iGNSS-R pessimistic case.

Sensor Parameter Magnitude

EIRP C/A 24 [dBW]
EIRP M 25.5 [dBW]
EIRP P 21 [dBW]

EIRP Total 28.64 [dBW]
Orbit Height 400 [km]

Ground speed 7214 [m/s]
Incidence angle 15◦

Frequency Band L1 (Composite)
Sea Water Dielectric Constant 72.6 + j58.5

Up-Looking Antenna Gain 22 [dBiC]
Down-Looking Antenna Gain 22 [dBiC]

Noise Figure 3.5 [dB]
Bandwidth 40 [MHz]

Table 4. GEROS-ISS scenario simulation parameters changes for the iGNSS-R optimistic case.

Sensor Parameter Magnitude

EIRP C/A 29.5 [dBW]
EIRP M 31 [dBW]
EIRP P 27 [dBW]

EIRP Total 34.23 [dBW]

(a) (b)

Figure 7. Simulations SNR for the GEROS-ISS scenario and iGNSS-R: (a) Total EIRP of 28.64 dBW
(pessimistic); (b) Total EIRP of 34.23 dBW (optimistic). Legend indicates u10 wind speed.



Sensors 2017, 17, 183 16 of 30

(a) (b)

Figure 8. Simulations of the normalized peak variability for the GEROS-ISS scenario and iGNSS-R:
(a) Total EIRP of 28.64 dBW (pessimistic); (b) EIRP of 34.23 dBW (optimistic). Legend indicates u10

wind speed.

8. Discussion

The previous section has shown several simulations for different scenarios. Firstly, it can be
concluded that when the antenna directivity is relatively low, which is the case of the UK TDS-1
scenario, the signal power is an important parameter, since it increases the SNR, and decreases the
signal’s variability. This effect can be observed by comparing Figures 3a,b and 4a,b. This indicates that
for those scenarios the thermal SNR is the limiting factor. The change in the slope in those scenarios is
justified because first it is dominating the term that multiplies Tn and after several averages the term
that dominates is the one that multiplies tn.

When the antenna directivity is large enough, which is in the case of the proposed antenna for
the GEROS-ISS mission, the transmitted power is not that important, and the expected performance
does not depend significantly on the wind speed. This can be seen by comparing Figures 5a,b
and 6a,b. Furthermore, an increase on the transmitted power by the GPS satellites results in a retrieval
performance independent from the wind speed. When the antenna has a directivity of 23 dB, the
incoherent power is one order of magnitude larger than the thermal noise power, and therefore it is
the factor determining the SNR.

When comparing the cGNSS-R and the iGNSS-R techniques, the results of the expected SNR
and the peak variability are at least 3 dB better for the cGNSS-R considering the same simulation
conditions. This occurs mainly because the thermal SNR for the iGNSS-R is degraded as compared to
the cGNSS-R one. Also, there is another aspect to be analyzed: the wider bandwidth codes used in the
iGNSS-R translate into smaller footprints, resulting in a larger correlation time between waveforms,
and a reduction of the improvement by incoherent averaging is expected as compared to the cGNSS-R
approach. This is seen in the slope of the SNR graphs. For cGNSS-R approach it is a little bit larger
than for the iGNSS-R. However, due to the high speed of the spaceborne platform, for the simulation
conditions they were very similar.

Note that the incoherent averaging considered here includes partially overlapped waveforms,
and in the case when they are not partially overlapped, the simulations presented are an overestimation
of the expected performance. In that situation, Tn would increase, resulting in a degradation of
the expected SNR and an increase of the peak’s variability (the factor

√
3/2 would become 1).

However, if the antenna directivity is as large as the one in the GEROS-ISS mission, the limiting
factor is the speckle noise rather than the thermal noise, and experimental results will be closer to the
theoretical ones.
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All equations derived in this work can be applied to any lag different from the specular one,
taking into account that the coherent component in those cases will be negligible. All the necessary
correlation functions are available in the Appendices, and the correlation times should be recomputed
accordingly for the appropriate lag. If the surface region under analysis falls into the delay-Doppler
ambiguity free zone, the Van Cittert-Zernike theorem can be used to compute the correlation times.
However, if delay-Doppler ambiguity exists, it should be computed taking into account two different
areas contributing to the same delay-Doppler cell.

9. Conclusions

This work has analyzed the expected SNR and estimated σ0 variability for cGNSS-R and iGNSS-R
from a theoretical point of view including the presence of a coherent scattering component, which had
been neglected in previous works. Recent UK TDS-1 data shows that for some types of surfaces the
coherent component cannot be disregarded, and therefore the reflected signal does not always obey
Gaussian statistics, but a Hoyt one.

Theoretical expressions of the expected SNR and the estimated σ0 variability are presented in
this work which allow to predict the scatterometric performance of any GNSS-R mission. The first
important point is that, if the antenna directivity is not large enough, thermal SNR is the main limiting
factor of the scatterometric performance. However, if it is sufficiently large, speckle noise becomes the
limiting factor, and in that case, the cGNSS-R always performs better than the iGNSS-R because the
equivalent thermal noise is lower. The second important point is that, the larger the transmitted power
or the larger the directivity, the lower the dependence on the wind speed. The directivity threshold
when the speckle noise is the entirely dominant term lies on 23 dB.

The averaging of partially overlapped waveforms has also been proposed and analyzed in
this work, as it would help to reduce the signal variability induced by thermal noise up to 0.88 dB.
However, this technique is mainly applicable to spaceborne scenarios where the platform moves faster
enough, and the surface correlation time is around 1–2 ms, while under airborne situations the surface
correlation time may be sometimes larger and speckle noise would become the limiting factor.
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Abbreviations

The following abbreviations are used in this manuscript:

ACF Auto-Correlation Function
cGNSS-R conventional GNSS-R
DDM Delay-Doppler Map
EIRP Equivalent Isotropically Radiated Power
GEROS-ISS GNSS REflectometry, Radio Occultation and Scatterometry on board the ISS
GNSS Global Navigation Satellite Systems
GNSS-R GNSS-Reflectometry
GPS Global Positioning System
ICD Interface Control Document
iGNSS-R interferometric GNSS-R
ISS International Space Station
KA Kirchoff Approximation
LOS Line Of Sight
MERRByS Measurement of Earth Reflected Radio-navigation Signals By Satellite
PARIS PAssive Reflectometry and Interferometry System
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PO Physical Optics
PRN Pseudo-Random Noise
RF Radio Frequency
SNR Signal-to-Noise Ratio
UK United Kingdom
UK TDS-1 UK TechDemoSat-1

Appendix A. Correlation Functions of the Different Terms

This Appendix details the computation of the correlation function of the different terms of
the waveform for both the cGNSS-R and iGNSS-R cases. This is used to estimate each component
power contribution and in the other Appendices where higher order statistics must be computed.
This Appendix includes the general signal model presented in this work, and the one used to apply
the signal processing algorithm described in Figure 2b (overlapped waveforms).

The correlation function of nT,c(t, τ) is:

E{nT,c(t1, τ1)n∗T,c(t2, τ2)} =
1

T2
c

E

{ ∫ + Tc
2

− Tc
2

nrt(t1 + t′ + τ1)a(t1 + t′)dt′
∫ + Tc

2

− Tc
2

n∗rt(t2 + t′′ + τ2)a(t2 + t′′)dt′′
}

=

=
1

T2
c

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′a(t1 + t′)a(t2 + t′′)E{nrt(t1 + t′ + τ1)n∗rt(t2 + t′′ + τ2)}.

(A1)

Note that t1 and t2 stand for different times, τ1 and τ2 for different delays/lags. The term E{nrt(t1 +
t′ + τ1)n∗rt(t2 + t′′ + τ2)} stands for the correlation function of the incident thermal noise, which is
Rnrt ,nrt

(t1− t2 + τ1− τ2 + t′− t′′), and it can be obtained assuming a band-limited white noise spectrum
(square pulse in the frequency domain) and computing its inverse Fourier transform. Therefore:

E{nT,c(t1, τ1)n∗T,c(t2, τ2)} = 1
T2

c

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′a(t1 + t′)a(t2 + t′′)kTNr
sin(πB(t1−t2+τ1−τ2+t′−t′′))

π(t1−t2+τ1−τ2+t′−t′′) , (A2)

where B is the Radio Frequency (RF) bandwidth of the system, and kTNr the reflected thermal noise
spectral density. Also, assuming that 1/B� Tc the term sin(πB(t1−t2+τ1−τ2+t′−t′′))

π(t1−t2+τ1−τ2+t′−t′′) can be approximated
by a δ function in the integral. Therefore:

E{nT,c(t1, τ1)n∗T,c(t2, τ2)} =
kTNr

T2
c

∫ + Tc
2

− Tc
2

dt′
∫ +∞

−∞
dt′′a(t1 + t′)a(t2 + t′′)Π

(
t′′ − Tc/2

Tc

)
×

δ(t1 − t2 + τ1 − τ2 + t′ − t′′) =

=
kTNr

T2
c

∫ + Tc
2

− Tc
2

a(t1 + t′)a(t1 + t′ + τ1 − τ2)Π
(

t1 + t′ + τ1 − τ2 − t2 − Tc/2
Tc

)
dt′,

(A3)

and if this correlation is analyzed for the same delay (τ1 = τ2), then:

E{nT,c(t1, τ)n∗T,c(t2, τ)} = kTNr
Tc

Λ
(

t1 − t2

Tc

)
= 2σ2

t,c(τ)γnTc ,nTc(t1 − t2, τ = 0), (A4)

where γnTc ,nTc(t1 − t2, τ = 0) is the normalized correlation function of the thermal noise after the
correlation with a clean replica of the satellite code, and Λ refers to the triangle function which is
defined as:

Λ
(

ξ

T

)
=

{
1− |ξ|T |ξ| ≤ T

0 elsewhere
. (A5)

The general expression of the correlation function becomes:

E{nTc(t1, τ1)n∗Tc(t2, τ2)} =
kTNr

Tc
Λ
(

t1 − t2

Tc

)
Ra,a(τ1 − τ2), (A6)

where the Ra,a(τ1 − τ2) = Λ
(

τ1−τ2
τchip

)
, and it is the code auto-correlation function [16] which is

approximated by the Λ function in the GPS case, where τchip is the chip length (977 ns for the GPS C/A
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code). Note that white thermal noise is by definition uncorrelated, but due to the coherent integration
process it becomes partially correlated for the same delay τ. Also note that by the properties of the Fourier
transform, when t1 = t2 the thermal noise power for the cGNSS-R case can be obtained from (A6):

PTc(τ) =
kTNr

Tc
. (A7)

This expression demonstrates a reduction of the noise equivalent bandwidth due to the coherent
integration process.

The correlation of ρ0(τ) (deterministic) is:

E{ρ0(τ1)ρ
∗
0(τ2)} = Pcoh(τ) =

ETGRD2
R(0)Λ

2
[

τ1−τ2−
R0,sp+Rsp

c

]
|S(0)|2λ2

(4π)2(R0,sp+Rsp)
2 |r (θ) |2e−4κ2σ2

h cos2(θinc), (A8)

where GR stands for the receiving antenna gain, and has assumed that the coherent reflected power
does not vary with time. It also shows that this only exists when the signal correlation is maximal
(for a determined value of τ). In other words, it is only defined for τ = τ1 − τ2 =

R0,sp+Rsp
c .

The correlation of nS(t, τ) has been studied in several works in the literature for the sea surface
(in the absence of a coherent component) [6–9,23,36]. A dedicated study is required to analyze this
term in detail. For instance, ref. [9] assumes that between 1 ms waveforms the correlation function is a
Kronecker delta function. This fact occurs, for instance, with the thermal noise correlation function
as γnTc,nTc(t1− t2, τ) sampled at t1− t2 ∝ 1ms is equivalent to a Kronecker delta function too. Herein,
it has been decided to use a Gaussian correlation function whose correlation time is computed based
on the Van Cittert-Zernike theorem [39]. Therefore:

E{nS(t1, τ1)n∗S(t2, τ2)} =E
{ 1

Tc

∫ + Tc
2

− Tc
2

urinc(t1 + t′ + τ1)a(t1 + t′)dt′
1
Tc

∫ + Tc
2

− Tc
2

u∗rinc
(t2 + t′′ + τ2)a(t2 + t′′)dt′′

}
=

=
1

T2
c

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′a(t1 + t′)a(t2 + t′′)E{urinc(t1 + t′ + τ1)u∗rinc
(t2 + t′′ + τ2)}.

(A9)

Taking into account that:

urinc

(
~Rr, t

)
=
∫

D(~r)a[t− (R0 − R)/c]ginc(~r, t)d~r, (A10)

then:

E{nS(t1, τ1)n∗S(t2, τ2)} =
∫ 1

T2
c

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′a(t1 + t′)a(t2 + t′′)a(t1 + t′ + τ1 − (R0 − R)/c)×

a(t2 + t′′ + τ2 − (R0 − R)/c)ρurinc ,urinc
(t1 − t2 + τ1 − τ2 + t′ − t′′)d~rd~r′,

(A11)

where it has been assumed that the surface remains frozen for the coherent integration time,
and ρurinc ,urinc

(t1 − t2 + τ1 − τ2 + t′ − t′′) is the correlation function of the ginc function. Then:

E{nS(t1, τ1)n∗S(t2, τ2)} =
∫ 1

2T2
c

∫ 0

−Tc

dξρurinc ,urinc
(t1 − t2 + τ1 − τ2 + ξ)

∫ ξ+Tc

−ξ−Tc

a
(

t1 +
η

2
+

ξ

2

)
a
(

t2 +
η

2
− ξ

2

)
×

a
(

t1 +
η

2
+

ξ

2
+ τ1 − (R0 − R)/c

)
a
(

t2 +
η

2
− ξ

2
+ τ2 − (R0 − R)/c

)
dηd~rd~r′+

+
1

2T2
c

∫ Tc

0
dξρurinc ,urinc

(t1 − t2 + τ1 − τ2 + ξ)
∫ −ξ+Tc

ξ−Tc

a
(

t1 +
η

2
+

ξ

2

)
a
(

t2 +
η

2
− ξ

2

)
×

a
(

t1 +
η

2
+

ξ

2
+ τ1 − (R0 − R)/c

)
a
(

t2 +
η

2
− ξ

2
+ τ2 − (R0 − R)/c

)
dηd~rd~r′ =

=
∫ 1

Tc

∫ Tc

−Tc

ρurinc ,urinc
(t1 − t2 + τ1 − τ2 + ξ)Λ

(
ξ

Tc

)
Ra,a(τ1 − (R0 − R)/c)×

Ra,a(τ2 − (R0 − R)/c)dξd~rd~r′.

(A12)
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This equation can be rearranged into two different integrals as the convolution of two different
functions, the surface correlation function and the Λ function. Then:

E{nS(t1, τ1)n∗S(t2, τ2)} =
1
Tc

(
Rurinc ,urinc

∗ΛTc

)
(t1 − t2 + τ1 − τ2), (A13)

where

Rurinc ,urinc
(t1 − t2 + τ1 − τ2) =

∫
Ra,a(τ1 − (R0 − R)/c)Ra,a(τ2 − (R0 − R)/c)ρurinc ,urinc

(t1 − t2 + τ1 − τ2)d~rd~r′, (A14)

and it stands for the surface correlation function. Assuming that τ1 = τ2 = (R0 − R)/c, then
Ra,a(τ1 − (R0 − R)/c) is equal to one in the surface correlation integral, and therefore:

E{nS(t1, τ)n∗S(t2, τ)} = Pincoh(τ)γs,s(t1 − t2, τ) =
1
Tc

(
ρurinc ,urinc

(t1 − t2) ∗Λ
(

t1 − t2

Tc

))
. (A15)

If a Gaussian correlation function is assumed, then:

ρurinc ,urinc
(t1 − t2, τ = 0) = Pincoh(τ)e

−
(

t1−t2
tc

)2

, (A16)

where Pincoh(τ) is the incoherent received power at a given delay which is given by [18]

Pincoh(τ) =
EIRPTGR

(4π)2 IAillpq(τ), IAillpq(τ) = λ2
∫

Aill

σ0(~ρ)D2
T(~ρ)D2

R(~ρ)Λ
2(τ,~ρ)|S[τ,~ρ]|2

4πR2
0(~ρ)R2(~ρ)

d2ρ, (A17)

and

tc ≈ 2 · λ

2vr

√
R

cτchip
(A18)

where vr is the platform’s speed, and the initial 2 has been added because the surface is illuminated
with a triangular pulse instead of a square one due to the ACF function shape of the satellite
codes. A reference to compute the equivalent ACF for PRN codes different from the C/A is [16].
The γs,s(t1 − t2, τ = 0) becomes:

γs,s(t1 − t2, τ = 0) =
1
Tc

(
e
(

t1−t2
tc

)2

∗Λ
(

t1 − t2

Tc

))
. (A19)

Finally, the E{nT,i(t1, τ)n∗T,i(t2, τ)} breaks into different terms which will be computed in the
following equations. So, the nT,i(t, τ) is defined as follows:

nT,i(t, τ) = nT,c(t, τ) +

√
1

SNRd

(
yur ,dt(t, τ) + yrt ,dt(t, τ)

)
(A20)

Hence, taking into account that all the terms are mutually independent, and that their respective
mean value is 0, it is obtained:

E{nT,i(t1, τ1)n∗T,i(t2, τ2)} =E{nT,c(t1, τ1)n∗T,c(t2, τ2)}+

+
1

SNRd

(
E{yur ,dt(t1, τ1)y∗ur ,dt

(t2, τ2)}+ E{ydt ,rt(t1, τ1)y∗dt ,rt
(t2, τ2)}

)
,

(A21)

where:

E{nT,c(t1, τ)n∗T,c(t2, τ)} = kTNr
Tc

Λ
(

t1 − t2

Tc

)
Ra,a(τ1 − τ2), (A22)
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E{yur ,dt(t1, τ1)y∗ur ,dt
(t2, τ2)} =

1
T2

c

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′E{ur(t1 + t′ + τ1)u∗r (t2 + t′′ + τ2)}×

E{n̄dt(t1 + t′ + τ1)n̄∗dt
(t2 + t′′ + τ2)},

(A23)

where n̄dt is the normalized thermal noise power (recall that by definition the direct noise signal has
been normalized by the power of the clean direct signal). Assuming the same band-limited noise
properties as previously, Equation (A23) becomes:

E{yur ,dt(t1, τ1)y∗ur ,dt
(t2, τ2)} =

1
BT2

c

∫ + Tc
2

− Tc
2

dt′
∫ +∞

−∞
dt′′E{ur(t1 + t′ + τ1)u∗r (t2 + t′′ + τ2)}×

Π
(

t′′ − Tc/2
Tc/2

)
sin (πB(t1 + t′τ1 − t2 − t′′ − τ2))

π(t1 + t′τ1 − t2 − t′′ − τ2)
=

=
1

BT2
c

∫ + Tc
2

− Tc
2

dt′E{|ur(t1 + t′ + τ1)|2}Π
(

t1 − t2 + τ1 − τ2 + t′ − Tc/2
Tc/2

)
.

(A24)

The term E{|ur(t1 + t′ + τ)|2} stands for the total reflected signal power [Pcoh(τ) + Pincoh(τ)],
and due to stationarity it can be taken out of the integral. Therefore:

E{yur ,dt(t1, τ1)y∗ur ,dt
(t2, τ2)} =

Pcoh(τ) + Pincoh(τ)

BT2
c

∫ + Tc
2

− Tc
2

dt′Π
(

t1 − t2 + τ1 − τ2 + t′ − Tc/2
Tc/2

)
=

=
1

BTc
(Pcoh(τ) + Pincoh(τ))Λ

(
t1 − t2 + τ1 − τ2

Tc

)
.

(A25)

If considering the same delay (τ1 = τ2), then:

E{yur ,td(t1, τ)y∗ur ,td
(t2, τ)} = 1

BTc
(Pcoh(τ) + Pincoh(τ))Λ

(
t1 − t2

Tc

)
. (A26)

The term E{yrt ,dt(t1, τ1)y∗rt ,dt
(t2, τ2)} is given by:

E{yrt ,dt(t1, τ1)y∗rt ,dt
(t2, τ2)} =

1
T2

c

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′E{nrt(t1 + t′ + τ1)n∗rt(t2 + t′′ + τ2)}×

E{n̄dt(t1 + t′ + τ1)n̄∗dt
(t2 + t′′ + τ2)} =

=
kTNr

Tc

1
BTc

∫ + Tc
2

− Tc
2

dt′
∫ + Tc

2

− Tc
2

dt′′
sin2 (πB(t1 + t′ + τ1 − t2 − t′′ − τ2))

(π(t1 + t′ − t2 − t′′))2 ,

(A27)

and this integral can be solved by changing the variables, ξ = t′ − t′′, η = t′ + t′′, and considering that
the Jacobian of the transformation is 1/2. Hence:

E{yrt ,dt(t1, τ)y∗rt ,dt
(t2, τ)} = kTNr

Tc

1
B

∫ +Tc

−Tc
Λ
(

x
Tc

)
sin2 (πB(t1 − t2 + τ1 − τ2 + x))

(π(t1 − t2 + τ1 − τ2 + x))2 dx. (A28)

If 1/B� Tc, which always occurs since there is a minimum of 3 orders of magnitude difference
between them, the sinc2 function is much more narrower than the Λ function. This results in being
able to take the Λ function out of the integral. Therefore:

E{yrt ,dt(t1, τ)y∗rt ,dt
(t2, τ)} = kTNr

Tc

1
B

Λ
(

t1 − t2 + τ1 − τ2

Tc

) ∫ +Tc

−Tc

sin2 (πB(t1 − t2 + τ1 − τ2 + x))

(π(t1 − t2 + τ1 − τ2 + x))2 dx =

=
kTNr

Tc
Λ
(

t1 − t2 + τ1 − τ2

Tc

)
,

(A29)

where the symmetry property of the Λ function has been used. If, for all cases τ1 = τ2, then the
correlation function of the equivalent iGNSS-R thermal noise becomes:

E{nT,i(t1, τ)n∗T,i(t2, τ)} = Λ
(

t1−t2
Tc

)
·
(

kTNr
Tc

+ 1
SNRd

[
1

BTc
(Pcoh(τ) + Pincoh(τ)) +

kTNr
Tc

])
, (A30)
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and simplifying:

E{nT,i(t1, τ)n∗T,i(t2, τ)} = Λ
(

t1 − t2

Tc

)
2σ2

t,c(τ) ·
(

1 +
1

SNRd
(SNRr + 1)

)
, (A31)

where SNRr refers to the pre-correlation SNR for the reflected signal:

SNRr =
Pcoh(τ) + Pincoh(τ)

kTNrB
, (A32)

and γnTi ,nTi (t1 − t2, τ) = γnTc ,nTc(t1 − t2, τ).

Appendix B. Fourth Order Correlation Functions

Assuming that the above mentioned processes are Gaussian processes, the fourth order correlation
functions can be expressed as a function of the second order correlation functions [17]. Therefore the
shape of the fourth order correlation functions is:

Γx,x(t1 − t2, τ) = (2σ2(τ))2
(

1 + |γx,x(t1 − t2, τ)|2
)

. (B1)

Therefore:

E{nS(t1, τ)n∗S(t1, τ)nS(t2, τ)n∗S(t2, τ)} = P2
incoh(τ)

1 +

∣∣∣∣∣ 1
Tc

[
e
(

t1−t2
tc

)2

∗Λ
(

t1−t2
Tc

)]∣∣∣∣∣
2
 = ΓS,S(t1 − t2, τ), (B2)

E{nT,c(t1, τ)n∗T,c(t1, τ)nT,c(t2, τ)n∗T,c(t2, τ)} = P2
Tc
(τ)

(
1 +

∣∣∣∣Λ( t1 − t2
Tc

)∣∣∣∣2
)

= ΓnTc ,nTc (t1 − t2, τ), (B3)

E{nT,i(t1, τ)n∗T,i(t1, τ)nT,i(t2, τ)n∗T,i(t2, τ)} = P2
Ti
(τ)

(
1 +

∣∣∣∣Λ( t1 − t2
Tc

)∣∣∣∣2
)

= ΓnTi ,nTi (t1 − t2, τ). (B4)

Appendix C. Detectability Criteria for the Different Cases

This Appendix details the computation of the detectability criteria shown in Section 4 when
no incoherent integration has been applied. To compute each detectability criterion the following
assumptions must be considered.

For the cGNSS-R:
fS+N = Yc(t, τ) = |yc(t, τ)|2, (C1)

fN = |nT,c(t, τ)|2, (C2)

and for the iGNSS-R:
fS+N = Yi(t, τ) = |yi(t, τ)|2, (C3)

fN =
∣∣∣nT,c(t, τ) +

√
1

SNRd
yrt ,dt(t, τ)

∣∣∣2. (C4)

Note that in the absence of signal power yur ,dt(t, τ) = 0, which is why it does not appear in the fN
expression for the iGNSS-R.

Appendix C.1. Derivation of dc

As it has been shown in Section 4, the detectability criterion dc is:
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dc =
E{ fS+N} − E{ fN}√

E{ f 2
N} − E{ fN}2

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)− PTc(τ)√

2P2
Tc
(τ)− P2

Tc
(τ)

=
Pcoh(τ) + Pincoh(τ)

PTc(τ)
, (C5)

where:

Yc(t, τ) = yc(t, τ)yc(t, τ)∗ = |ρ0(t, τ)|2 + ρ0(t, τ)n∗S(t, τ) + ρ0(t, τ)n∗T,c(t, τ) + ρ∗0(t, τ)nS(t, τ)+

+ |nS(t, τ)|2 + nS(t, τ)n∗T,c(t, τ) + ρ∗0(t, τ)nT,c(t, τ) + nT,c(t, τ)n∗S(t, τ) + |nT,c(t, τ)|2,
(C6)

E{ fS+N} = E{|ρ0(t, τ)|2 + |nS(t, τ)|2 + |nT,c(t, τ)|2} =
= Pcoh(τ) + Pincoh(τ)γs,s(0, τ) + PTc(τ)γnTc ,nTc(0, τ) =

= Pcoh(τ) + Pincoh(τ) + PTc(τ),

(C7)

E{ fN} = E
{
|nT,c(t, τ)|2

}
= PTc(τ)γnTc ,nTc(0, τ) = PTc(τ), (C8)

and using the properties of Gaussian processes:

E{ fN
2} = E

{
|nT,c(t, τ)|4

}
= ΓnTc ,nTc(0, τ) = P2

Tc
(τ)

(
1 + |γnTc ,nTc(0, τ)|2

)
= 2P2

Tc
(τ). (C9)

Appendix C.2. Derivation of d′c

As it has been shown in Section 4, the detectability criterion d′c is:

d′c =
E{ fS+N} − E{ fN}√
E{ f 2

S+N} − E{ fS+N}2
=

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)− PTc(τ)√

2(Pcoh(τ) + Pincoh(τ) + PTc(τ))
2 − P2

coh(τ)− (Pcoh(τ) + Pincoh(τ) + PTc(τ))
2
=

=
Pcoh(τ) + Pincoh(τ)√

(Pcoh(τ) + Pincoh(τ) + PTc(τ))
2 − P2

coh(τ)
=

1√(
1 + 1

SNRTHc

)2
−
(

1− 1
SNRSP

)2
,

(C10)

where:

E{ fS+N
2} =E{Y2

c (t, τ)} = E{Yc(t, τ)Yc(t, τ)} = E{|ρ0(t, τ)|4}+ E{|nS(t, τ)|4}+ E{|nT,c(t, τ)|4}+

+ 4E{|ρ0(t, τ)|2|nS(t, τ)|2}+ 4E{|ρ0(t, τ)|2|nT,c(t, τ)|2}+ 4E{|nS(t, τ)|2|nT,c(t, τ)|2} =
=2(Pcoh(τ) + Pincoh(τ) + PTc(τ))

2 − P2
coh(τ),

(C11)

SNRTHc =
Pcoh(τ) + Pincoh(τ)

PTc(τ)
, (C12)

SNRSP =
Pcoh(τ) + Pincoh(τ)

Pincoh(τ)
. (C13)
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Appendix C.3. Derivation of di

As it has been shown in Section 4, the detectability criterion di is:

di =
E{ fS+N} − E{ fN}√

E{ f 2
N} − E{ fN}2

=

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)

(
1 + 1

SNRd
(SNRr + 1)

)
− PTc(τ)

(
1 + 1

SNRd

)
√

2P2
Tc(τ)

(
1 + 1

SNRd

)2
− P2

Tc
(τ)

(
1 + 1

SNRd

)2
=

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)

SNRr
SNRd

PTc(τ)

(
1 + 1

SNRd

) =
1 + 1

dc
SNRr
SNRd

1
dc

(
1 + 1

SNRd

) ≈ dc
1

1 + 1
SNRd

,

(C14)

where:

Yi(t, τ) = yi(t, τ)yi(t, τ)∗ = |yc(t, τ)|2 +

√
1

SNRd
yc(t, τ)y∗ur ,dt

(t, τ) +

√
1

SNRd
yc(t, τ)y∗rt ,dt

(t, τ)+

+

√
1

SNRd
yur ,dt(t, τ)y∗c (t, τ) +

1
SNRd

|yur ,dt(t, τ)|2 +

√
1

SNRd
yur ,dt(t, τ)y∗rt ,dt

(t, τ)+

+

√
1

SNRd
yrt ,dt(t, τ)y∗c (t, τ) +

√
1

SNRd
yrt ,dt(t, τ)y∗ur ,dt

(t, τ) +
1

SNRd
|yrt ,dt(t, τ)|2,

(C15)

E{ fS+N} = E
{
|yc(t, τ)|2 + 1

SNRd
|yur ,dt(t, τ)|2 + 1

SNRd
|yrt ,dt(t, τ)|2

}
=

= Pcoh(τ) + Pincoh(τ) + PTc(τ)

(
1 +

1
SNRd

(SNRr + 1)
)

,
(C16)

E{ fN} = E
{∣∣∣nT,c(t, τ) +

√
1

SNRd
yrt ,dt(t, τ)

∣∣∣2} = PTc(τ)

(
1 +

1
SNRd

)
, (C17)

and

E{ fN
2} = E

{∣∣∣nT,c(t, τ) +

√
1

SNRd
yrt ,dt(t, τ)

∣∣∣4} = E
{(
|nT,c(t, τ)|2 + 1

SNRd
|yrt ,dt(t, τ)|2+

+

√
1

SNRd
nT,c(t, τ)y∗rt ,dt

(t, τ) +

√
1

SNRd
n∗T,c(t, τ)yrt ,dt(t, τ)

)(
|nT,c(t, τ)|2+

+
1

SNRd
|yrt ,dt(t, τ)|2 +

√
1

SNRd
n∗T,c(t, τ)yrt ,dt(t, τ) +

√
1

SNRd
nT,c(t, τ)y∗rt ,dt

(t, τ)
)}

.

(C18)

To solve these moments, the results from Appendix B can be used. Therefore:

ΓnTc ,nTc(t1 − t2, τ) = (2σ2
t,c(τ))

2
(

1 + |γnTc ,nTc(t1 − t2, τ)|2
)
= P2

Tc
(τ)

(
1 + Λ2

(
t1 − t2

Tc

))
, (C19)

Γyrt ,dt ,yrt ,dt
(t1 − t2, τ) =

P2
Tc
(τ)

SNR2
d

(
1 + Λ2

(
t1 − t2

Tc

))
. (C20)

Hence:

E{ fN
2} = E{|nTc(t, τ)|4}+ 4

SNRd
E{|nT,c(t, τ)|2|yrt ,dt(t, τ)|2}+ 1

SNR2
d

E{|yrt ,dt(t, τ)|4} =

= 2P2
Tc(τ)

(
1 +

1
SNRd

)2
.

(C21)
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Appendix C.4. Derivation of d′i

As it has been shown in Section 4, the detectability criterion d′i is:

ki =
E{ fS+N} − E{ fN}√
E{ f 2

S+N} − E{ fS+N}2
=

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)

SNRr
SNRd√

2(Pcoh(τ) + Pincoh(τ) + PTi (τ))
2 − P2

coh(τ)− (Pcoh(τ) + Pincoh(τ) + PTi (τ))
2
=

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)

SNRr
SNRd√

(Pcoh(τ) + Pincoh(τ) + PTi (τ))
2 − P2

coh(τ)
=

1 + 1
dc

SNRr
SNRd√(

1 + 1
SNRTHi

)2
−
(

1− 1
SNRSP

)2
≈

≈ 1√(
1 + 1

SNRTHi

)2
−
(

1− 1
SNRSP

)2
.

(C22)

In this case, the term E{ fS+N
2} can be computed similarly to the previous computation of the k′c

parameter, but considering the noise term as nTi (t, τ) instead of nTc(t, τ). Therefore:

E{ fS+N
2} = 2(Pcoh(τ) + Pincoh(τ) + PTi (τ))

2 − P2
coh(τ), (C23)

where:

PTi (τ) = PTc(τ)

(
1 +

1
SNRd

(SNRr + 1)
)

, (C24)

SNRTHi =
Pcoh(τ) + Pincoh(τ)

PTi (τ)
=

Pcoh(τ) + Pincoh(τ)

PTc(τ)
(

1 + 1
SNRd

(SNRr + 1)
) =

SNRTHc

1 + 1
SNRd

(SNRr + 1)
. (C25)

Appendix D. Detectability Criteria for the Different Cases after Non Coherent Integration

This Appendix details the computation of the detectability criteria shown in Section 5 when
incoherent integration has been applied. To derive each detectability criterion the following
assumptions must be considered.

For the cGNSS-R:

fS+N =
1
T

∫ T

0
Yc(t + t′, τ)dt′, (D1)

fN =
1
T

∫ T

0
|nT,c(t + t′, τ)|2dt′, (D2)

and for the iGNSS-R:

fS+N =
1
T

∫ T

0
Yi(t + t′, τ)dt′, (D3)

fN =
1
T

∫ T

0

∣∣∣nT,c(t + t′, τ) +

√
1

SNRd
yrt ,dt(t + t′, τ)

∣∣∣2dt′. (D4)

Appendix D.1. Derivation of dnc

As it has been shown in Section 5, dnc is given by:

dnc =
E{ fS+N} − E{ fN}√

E{ f 2
N} − E{ fN}2

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)− PTc(τ)√

P2
Tc
(τ)

(
1 + Tn

)
− P2

Tc
(τ)

=

=

√
3
2

T
Tcoh

Pcoh(τ) + Pincoh(τ)

PTc(τ)
=

√
3
2

T
Tcoh

dc,

(D5)
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where:

E{ fS+N} = E
{

1
T
∫ T

0 Yc(t + t′, τ)dt′
}
= 1

T
∫ T

0 E{Yc(t + t′, τ)}dt′ = Pcoh(τ) + Pincoh(τ) + PTc(τ), (D6)

E{ fN} = E
{ 1

T

∫ T

0
|nT,c(t + t′, τ)|2dt′

}
=

1
T

∫ T

0
E{|nT,c(t + t′, τ)|2}dt′ = PTc(τ), (D7)

and using the properties of Gaussian processes:

E{ fN
2} =E

{ 1
T

∫ T

0
|nT,c(t + t′, τ)|2dt′

1
T

∫ T

0
|nT,c(t + t′′, τ)|2dt′′

}
=

=
1

T2

∫ T

0
dt′
∫ T

0
dt′′E{|nT,c(t + t′, τ)|2|nT,c(t + t′′, τ)|2} = 1

T2

∫ T

0
dt′
∫ T

0
dt′′ΓnTc ,nTc (t

′ − t′′, τ) =

=
1

T2

∫ T

0
dt′
∫ T

0
dt′′P2

Tc
(τ)

(
1 + Λ2

(
t′ − t′′

Tcoh

))
= P2

Tc
(τ) +

P2
Tc
(τ)

T2

∫ T

0
dt′
∫ T

0
dt′′Λ2

(
t′ − t′′

Tcoh

)
=

=P2
Tc
(τ) +

P2
Tc
(τ)

T

∫ T

−T
Λ
(

ξ

T

)
Λ2
(

ξ

Tcoh

)
dξ = P2

Tc
(τ)

(
1 + Tn

)
= P2

Tc
(τ)

(
1 +

2
3

Tcoh
T

)
.

(D8)

Appendix D.2. Derivation of d′nc

As it has been shown in Section 5, d′nc is given by:

d′nc =
E{ fS+N} − E{ fN}√
E{ f 2

S+N} − E{ fS+N}2
=

=
Pcoh(τ) + Pincoh(τ)√

2tsPcoh(τ)Pincoh(τ) + 2tnPcoh(τ)PTc(τ) + 2tstnPincoh(τ)PTc(τ) + TnP2
Tc
(τ) + TsP2

incoh(τ)
,

(D9)

where:

E{ fS+N
2} = E

{ 1
T

∫ T

0
Yc(t + t′, τ)dt′

1
T

∫ T

0
Yc(t + t′′, τ)dt′′

}
=

=
1

T2

∫ T

0
dt′
∫ T

0
dt′′E{Yc(t + t′, τ)Yc(t + t′′, τ)} =

(D10)

E{ fS+N
2} =P2

coh(τ) + 2Pcoh(τ)Pincoh(τ) + 2Pcoh(τ)PTc(τ) + 2Pincoh(τ)PTc(τ)+

+
1

T2

∫ T

0

∫ T

0
2Pcoh(τ)Pincoh(τ)γs,s(t′ − t′′, τ) + 2Pcoh(τ)PTc(τ)γnTc ,nTc(t

′ − t′′, τ)+

+ 2Pincoh(τ)γs,s(t′ − t′′, τ)PTc(τ)γnTc ,nTc(t
′ − t′′, τ) + Γs,s(t′ − t′′, τ) + ΓnTc ,nTc(t

′ − t′′, τ)dt′dt′′ =

(D11)

E{ fS+N
2} =P2

coh(τ) + 2Pcoh(τ)Pincoh(τ) + 2Pcoh(τ)PTc(τ) + 2Pincoh(τ)PTc(τ)+

+
1
T

∫ T

−T
Λ
(

ξ

T

)(
2Pcoh(τ)Pincoh(τ)γs,s(ξ, τ) + 2Pcoh(τ)PTc(τ)γnTc ,nTc(ξ, τ)+

+ 2Pincoh(τ)γs,s(ξ, τ)PTc(τ)γnTc ,nTc(ξ, τ) + Γs,s(ξ, τ) + ΓnTc ,nTc(ξ, τ)

)
dt′dt′′ =

(D12)

E{ fS+N
2} =P2

coh(τ) + 2
(
1 + ts

)
Pcoh(τ)Pincoh(τ) + 2

(
1 + tn

)
Pcoh(τ)PTc(τ)+

+ 2
(
1 + tstn

)
Pincoh(τ)PTc(τ) + P2

Tc
(τ)

(
1 + Tn

)
+ P2

incoh(τ)
(
1 + Ts

)
,

(D13)

which uses the time definitions shown in Equation (31a)–(31d).
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Appendix D.3. Derivation of dni

As it has been shown in Section 5, dni is given by:

dni =
E{ fS+N} − E{ fN}√

E{ f 2
N} − E{ fN}2

=
Pcoh(τ) + Pincoh(τ) + PTi (τ)− PTc(τ)

(
1 + 1

SNRd

)
√

P2
Tc
(τ)

(
1 + Tn

) (
1 + 1

SNRd

)2
− P2

Tc
(τ)

(
1 + 1

SNRd

)2
=

=

√
3
2

T
Tcoh

Pcoh(τ) + Pincoh(τ) + PTc(τ)
SNRr
SNRd

PTc(τ)
(

1 + 1
SNRd

) = dnc
1

1 + 1
SNRd

+

√
3
2

T
Tcoh

SNRr

SNRd + 1
,

(D14)

where:

E{ fS+N} = E
{

1
T
∫ T

0 Yi(t + t′, τ)dt′
}
= 1

T
∫ T

0 E{Yi(t + t′, τ)}dt′ = Pcoh(τ) + Pincoh(τ) + PTi (τ), (D15)

E{ fN} = E
{ 1

T

∫ T

0

∣∣∣nT,c(t + t′, τ) +

√
1

SNRd
yrt ,dt(t + t′, τ)

∣∣∣2dt′
}
=

=
1
T

∫ T

0
E{|nT,c(t + t′, τ)|2}dt′ +

1
SNRd

1
T

∫ T

0
E{|yrt ,dt(t + t′, τ)|2}dt′

= PTc(τ)

(
1 +

1
SNRd

)
,

(D16)

and using the properties of Gaussian processes, we obtain:

E{ fN
2} =E

{ 1
T

∫ T

0

∣∣∣nT,c(t + t′, τ) +

√
1

SNRd
yrt ,dt(t + t′, τ)

∣∣∣2dt′×

1
T

∫ T

0

∣∣∣nT,c(t + t′′, τ) +

√
1

SNRd
yrt ,dt(t + t′′, τ)

∣∣∣2dt′′
}
=

(D17)

E{ fN
2} = 1

T2

∫ T

0

∫ T

0
E{|nT,c(t + t′, τ)|2|nT,c(t + t′′, τ)|2}+

+
1

SNRd
E{|nT,c(t + t′, τ)|2|yrt ,dt(t + t′′, τ)|2}+

+
1

SNRd
E{nT,c(t + t′, τ)n∗T,c(t + t′′, τ)yrt ,dt(t + t′, τ)y∗rt ,dt

(t + t′′, τ)}+

+
1

SNRd
E{nT,c(t + t′′, τ)n∗T,c(t + t′, τ)yrt ,dt(t + t′′, τ)y∗rt ,dt

(t + t′, τ)}+

+
1

SNRd
E{|nT,c(t + t′′, τ)|2|yrt ,dt(t + t′, τ)|2}+

+
1

SNR2
d

E{|yrt ,dt(t + t′, τ)|2|yrt ,dt(t + t′′, τ)|2}dt′dt′′ =

(D18)

E{ fN
2} = 1

T2

∫ T

0

∫ T

0
ΓnTc ,nTc(t

′ − t′′, τ) +
2P2

Tc
(τ)

SNRd
γnTc ,nTc(0, τ)γyrt ,dt ,yrt ,dt

(0, τ)+

+ Γyrt ,dt ,yrt ,dt
(t′ − t′′, τ) +

2P2
Tc
(τ)

SNRd
γnTc ,nTc(t

′ − t′′, τ)γyrt ,dt ,yrt ,dt
(t′ − t′′, τ)dt′dt′′ =

=P2
Tc
(τ)

(
1 + Tn

) (
1 +

1
SNRd

)2
.

(D19)
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Appendix D.4. Derivation of d′ni

As it has been shown in Section 5, d′ni is given by:

d′ni =
E{ fS+N} − E{ fN}√
E{ f 2

S+N} − E{ fS+N}2
=

=
Pcoh(τ) + Pincoh(τ) + PTc(τ)

SNRr
SNRd√

2tsPcoh(τ)Pincoh(τ) + 2tnPcoh(τ)PTi (τ) + 2tstnPincoh(τ)PTi (τ) + TnP2
Ti
(τ) + TsP2

incoh(τ)
,

(D20)

where:

E{ fS+N
2} =P2

coh(τ) + 2
(
1 + ts

)
Pcoh(τ)Pincoh(τ) + 2

(
1 + tn

)
Pcoh(τ)PTi (τ)+

+ 2
(
1 + tstn

)
Pincoh(τ)PTi (τ) + P2

Ti
(τ)

(
1 + Tn

)
+ P2

incoh(τ)
(
1 + Ts

)
,

(D21)

which is obtained similarly to the case when d′nc was computed, but substituting PTc(τ) by PTi (τ),
which can be done because they have the same statistics and correlation functions, and only the scaling
factor must be taken into account.
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